Conventional multi-hop routing of ad hoc wireless networks involves considerations such as costs, connection quality, distances, and numbers of hops. A conventional wireless routing algorithm may fail when a destructive event takes place and is rapidly expanding in area, as the route discoveries may perpetually lag behind the rate of expansion of the destructive area. As typically embodied, the present invention's wireless routing algorithm detects a destructive event early, assumes rapid expansion of the destruction area, establishes “subnets” of nodes, and predetermines one or more routes that circumvent the rapidly expanding destruction area by exiting from and returning to the subnet in which the destructive event originates. Typical inventive practice avails itself of the architectural character of the physical setting for the wireless network, for instance by establishing subnets corresponding to compartments formed by wall-like structures (e.g., shipboard bulkheads), which represent natural barriers to expansion of a destruction area.